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a b s t r a c t

Temperature distributions in the molten layer and solid with distinct properties around a bubble or par-
ticle entrapped in the solid during unidirectional solidification are determined by applying a heat-balance
integral approximation method. The present model can be used to simulate growth, entrapment or
departure of a bubble or particle inclusion in solids encountered in manufacturing and materials process-
ing, MEMS, contact melting processes, drilling, etc. In this work, the proposed heat-balance equations are
derived by integrating unsteady elliptic heat diffusion equations and introducing the Stefan boundary
condition. Due to the time-dependent irregular shapes of phases, coefficients of assumed quadratic tem-
perature profiles are considered to be functions of longitudinal coordinate and time. Temperature coef-
ficients in distinct regions therefore are determined by solving equations governing temperature
coefficients derived from heat-balance equations, imposing boundary conditions, and introducing a ficti-
tious boundary condition. The computed temperature fields show agreement with predictions from the
finite-difference method. Since the number of independent variables is reduced by one, this work pro-
vides an effective method to solve unsteady elliptic diffusion problems experiencing solid–liquid phase
changes in irregular shapes.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The heat conduction or diffusion problems involving phase
transition between solid and liquid (called the Stefan problem)
are nonlinear, because the moving boundaries must be determined
along with the solution. Except for several cases [1,2], these prob-
lems are not amenable to analytical solutions. Approximate integral
methods therefore are much easier to manipulate, as extensively
reviewed by Goodman [3] and Crank [2], because the number of
independent variables is reduced by one after an integration.
Approximate integral methods, for example, the Karman–Pohlhau-
sen method, have been widely and effectively used in the field of
boundary layer theory in fluid dynamics [4]. The nonlinear, para-
bolic transport differential equations after integration across the
spatial variable transverse to the stream direction and introduction
an assumed velocity profile will thereby reduce to a first-order or-
dinary differential equation for the boundary layer thickness. Using
a marching technique, boundary layer thickness as well as velocity
profiles can be readily obtained.
ll rights reserved.
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Goodman [5] applied a similar integral method to study dif-
ferent transient one-phase, single spatial dimension ice-melting
problems. He assumed a second-degree polynomial in the spatial
variable for temperature profile, comprising unknown time-
dependent coefficients analytically determined by satisfying
boundary conditions. A heat-balance equation was then obtained
by integrating the heat conduction equation over the thermal
boundary layer and introducing the assumed temperature profile
and Stefan boundary condition at the solid–liquid interface. The
heat-balance equation can be integrated to find the phase-
change boundary, leading to the time-dependent temperature
distribution. This method provides accurate, general and easy
solutions.

Goodman and Shea [6] further applied the heat-balance method
to the two-phase problem of melting a finite slab that is initially at
a uniform temperature below the melting point. Heat conduction
equations of the liquid and solid were, respectively, integrated over
their own phases. Summing the heat-balance equations of the
liquid and solid and introducing the Stefan boundary condition
gave the total heat-balance equation. The time-dependent coeffi-
cients of the assumed quadratic temperature profiles in the liquid
and solid were analytically determined from the boundary condi-
tions and the heat-balance equation of its own phase. Three
coupled ordinary differential equations including the total
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Nomenclature

a, b, c, a0, b0 temperature coefficients
f fictitious thickness beyond solidification front, as illus-

trated in Fig. 2
g temperature gradient, g* � gr0/(Ti � Tm), defined in Eq. (11)
�h mean heat transfer coefficient
H energy function, H� ¼ H=½ðT i � TmÞr3

0�, defined in Eq. (14)
K kl/ks

L latent heat
Nu Nusselt number � �hr0=kl
r spherical radial coordinate, r* � r/r0, as illustrated in

Fig. 1
R outside radius of system, R* � R/r0, as illustrated in Fig. 1
r0 initial radius of curvature at axisymmetric axis
s location of solidification front, s* � s/r0, as illustrated in

Fig. 1
Ste Stefan number � cp(Ti � Tm)/L
t* dimensionless time � tal=r2

0
U solidification speed = ds/dt
x, z coordinates in horizontal and upward directions, as

illustrated in Fig. 1

Greek letters
C al/as

d molten layer thickness � rm � ri, d* � d/r0

h polar angle in spherical coordinates, as illustrated in
Fig. 1

w dimensionless temperature � (T � Tm)/(Ti � Tm)

Subscripts
c cold bottom
e edge
f fictitious region
i inner surface, namely, bubble or particle surface
l liquid
m melting
R outer boundary
s solid
0 initial time

Superscript
* dimensionless quantity
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heat-balance equation and integrated temperatures for two phases
were solved by using a power series method.

Most previous investigations were confined to transient
one-dimensional problems. Poots [7] therefore extended the heat-
balance integral method to solve a two-dimensional, one-phase
problem related to solidification of a liquid, initially at the fusion
temperature, contained in a uniform prism of square cross-section.
The surface was suddenly maintained at a constant temperature
below the fusion temperature. The heat-balance equations involved
complicated surface and volume integrations. The three-dimen-
sional freezing of a cuboid was similarly extended by Riley and
Duck [8]. The expressions for the two- or three-dimensional
profiles and the resulted heat-balance equations, however, were
cumbersome.

Rasmussen [9] extended the heat-balance integral method to
solve a transient, two-dimensional, one-phase heat conduction
problem. Instead of a single two-dimensional global profile, the
temperature field in the solid was chosen to be a set of one-
dimensional profiles at pre-selected locations on the direction
transverse to the freezing direction. The coefficient of the tem-
perature profile was reciprocal of interface location, which was
a function of time and transverse coordinate. The linear profiles,
however, are hardly suited to practical problems. The heat-bal-
ance equation was then obtained by integrating over the liquid
phase along the freezing direction. Kharab [10] extended the un-
steady two-dimensional model provided by Rasmussen [9] and
introduced a quadratic temperature profile to predict a transient
three-dimensional temperature field in a cuboid. To determine
the coefficients and interface location as functions of two spatial
variables and time, the zeroth and first momentum of the heat
conduction equation were used. This led to complicated equa-
tions for the interfacial location that needed to be solved
numerically.

The motivation of this work arisen from prediction of tem-
perature fields in the solid and liquid surrounding a bubble
growing after nucleation on the solidification front [11]. In
view of the physical domains in irregular shapes, the most fre-
quently used techniques to obtain a rectangular computational
domain are immobilization transformation and grid generation
methods. These, however, lead to many additional terms in
solving unsteady heat conduction equations with two spatial
coordinates and time [12,13]. The proposed integral method
in this work can be efficiently used to simulate nucleation
and growth of a bubble on a solidification front [11,14–24],
departure or capture of a particle on a solidification front
[25–29], contact melting [30–33], drilling processes [34–36],
etc.

In this work, temperature distributions around a bubble or par-
ticle surrounded by a molten layer in a solid produced in the course
of unidirectional solidification are determined by applying the
heat-balance integral method. Owing to transient irregular shapes
of phases, the time- and angle-dependent coefficients of assumed
temperature profiles are determined by solving total and heat-bal-
ance equations governing temperature coefficients, imposing real
and fictitious boundary conditions in distinct regions. This present
work provides a general and modified approximation method to
solve unsteady elliptic diffusion equations in irregular domains
experiencing phase changes.

2. System model and analysis

In this work, an axisymmetric tiny bubble (or particle) around
10�3–10�6 m is emanated on the solidification front and entrapped
in solid, as illustrated in Fig. 1. A spherical coordinate system is
chosen with the origin at the same level as the solid–liquid inter-
face at a time specified by t = 0. In view of the cold temperature
Tc at the bottom location z = zc, which is a negative value, the so-
lid–liquid interface proceeds at a speed U in the positive z-direc-
tion. The bubble surface at r = ri maintains constant temperature
Ti, while the temperature at r = R far from the bubble is linear in
z-direction. In this case, temperatures Tc 6 Tm 6 Ti are considered.
Heat thus can also be transferred from the liquid beyond the solid-
ification front through the bubble into the solid, resulting in the
formation of a thin liquid layer in a time-dependent thickness d.
At location z = s, there exist two different boundary conditions,
which are the melting temperature at the solidification front
(r P rm) and the heat convection across the liquid layer
(ri 6 r 6 rm).



Fig. 1. System model physical domain and coordinate system.
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2.1. Governing equations and boundary conditions

Without loss of generality, the major assumptions made are as
follows:

1. This model is unsteady and axisymmetric.
2. Temperature at the bubble surface is uniform. This is because the

Biot number, defined as the product of heat transfer coefficient
and average or hydraulic bubble radius divided by thermal con-
ductivity of the gas in the bubble, is approximately 0.001–0.01
[37,38].

3. The surface of the bubble (or particle) in the solid is indepen-
dent of time to a first approximation, as confirmed by experi-
mental observations [11,24]. In fact, the growth (or decay) of
the bubble is due to a decrease (or increase) in time-dependent
gas pressure in the bubble, resulted from mass transfer of solute
gases accumulated around the bubble and ahead of the solidifi-
cation front. However, the growth of the bubble surface is faster
than the time scale of solidification. The effects of the time-
dependent bubble surface on thermal fields thus are not so
important. The frequently observed long columnar pores in a
solid also reveal the nearly stationary bubble shape [18]. The
present method is still applicable, provided that the bubble
shape is time-dependent. Governing equations, however,
become complicated, as discussed later.

4. Convection in the molten layer is neglected. Except for the per-
turbed body force due to gravity [39], the driving forces such as
Marangoni and buoyancy forces responsible for convection are
neglected due to a rather uniform surface temperature and
small size of the microscale-sized and lumped bubble.

5. The solidification rate in the upward freezing is specified from
experimental data [24]. Otherwise, a self-consistent solidification
rate is determined by simultaneously solving energy equations for
solid and liquid phases satisfied by Stefan boundary condition.

6. Temperature in the solid far from the bubble at any instanta-
neous time is a linear function of coordinate in the freezing
direction.

7. Temperature profiles in the solid and the liquid are assumed to
be quadratic in radial directions, while their coefficients are
functions of longitudinal direction and time.

8. Thermal properties between the solid and liquid are allowed to
be distinct and constant averaged within a reasonable temper-
ature range considered.
With the above assumptions, unsteady, axisymmetric heat con-
duction equations in the liquid and solid, respectively, become

oT l

ot
¼ alr2T l ð1Þ

oTs

ot
¼ asr2Ts ð2Þ

where the Laplacian operator is

r2 � 1
r2

o

or
r2 o

or

� �
þ 1
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o

oh
sin h

o

oh

� �
ð3Þ

Temperature at the bubble or inner surface is

T l ¼ T i ¼ const: at r ¼ riðhÞ and hie 6 h 6 p ð4Þ

Temperature and balance of heat fluxes at the outer boundary of the
liquid layer are, respectively, [38,40,41]

T l ¼ Tm ¼ Ts; �kl
oT l

on
¼ qLvn � ks

oTs

on
at r ¼ rmðh; tÞ and

hme 6 h 6 p ð5Þ

where the second equation is Stefan boundary condition indicating
that heat conduction from liquid to the solid–liquid interface is bal-
anced by latent heat for melting or freezing and heat conduction
from the interface into solid. Velocity and normal gradient directed
from liquid to solid at the interface in Eq. (5), respectively, are
[38,40,41]
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where the scalar function F(r,h, t) = r � rm(h, t) = 0 delineates the
contour of the liquid layer. Solidification takes place due to the cold
temperature at the bottom, given by

Ts ¼ Tc at z ¼ zc ð8Þ

As mentioned previously, two boundary conditions are prescribed
at the top boundary. They are, respectively, specification of heat
convection across the liquid layer

�kl
oT l

oh
¼ �hr0ðT l � TmÞ for hie 6 h 6 hme at z ¼ sðtÞ ð9Þ

which indicates that the downward heat transfer to the liquid layer
is decreased across z = s in the outward direction. The melting tem-
perature at the solidification front

Ts ¼ Tm for hme 6 h 6 hRe at z ¼ sðtÞ ð10Þ

A linear temperature profile in solid in the vertical direction far
from the bubble is given by

Ts ¼ Tm þ gðtÞðz� sðtÞÞ; where gðtÞ � Tm � Tc

sðtÞ � zc

at R 6 r; zc 6 z 6 s ð11Þ

which is satisfied by melting and cold temperatures at the solidifi-
cation front (z = s) and bottom (z = zc), and dependence of time,
respectively.

2.2. Integral equations

Heat conduction equations (1) and (2) integrated along the
radial direction, respectively, give
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where dimensionless energy functions of the liquid and solid are,
respectively, defined as

H�l �
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Multiplying Eq. (12) by the conductivity ratio K, summing to Eq.
(13), and introducing the Stefan boundary condition from Eq. (5)
lead to the total energy equation
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Temperatures in the liquid and solid are assumed to be [3,5]

wl ¼ alðh; t�Þ r� � r�mðh; t�Þ
� �

þ blðh; t�Þ r� � r�mðh; t�Þ
� �2 ð16Þ

ws ¼ asðh; t�Þ r� � r�mðh; t�Þ
� �

þ bsðh; t�Þ r� � r�mðh; t�Þ
� �2 ð17Þ

where the boundary of the liquid layer (see Fig. 1)

r�mðh; t�Þ ¼ r�i ðhÞ þ d�ðh; t�Þ ð18Þ

Eqs. (16) and (17) are automatically satisfied by the melting tem-
perature at the outer boundary of the liquid layer. Furthermore,
the effects of boundary conditions in the longitudinal direction on
temperature fields are accounted for by the coefficients as functions
of the longitudinal coordinate h. Substituting Eqs. (16), (17) and (14)
into Eqs. (12) and (13), respectively, leads to
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where the dimensionless quantities and energy functions of liquid
and solid are, respectively,
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The total energy from Eq. (15) by introducing Eqs. (19)–(24) is sim-
plified to

C
Ste
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ot�
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r�2
m

or�m
oh
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" #
ðas � KalÞ ð25Þ

which is actually the Stefan boundary condition. This is because
terms as and al on the right-hand side, respectively, represent solid
and liquid temperature gradients at the solid–liquid interface, as
can be seen from the leading terms of Eqs. (16) and (17).

2.3. Determination of temperature coefficients in liquid layer

In order to solve Eq. (19), boundary conditions are required. A
relation between coefficients of temperature in the liquid layer is
found to be

al ¼ bld
� � 1

d�
ð26Þ

which is obtained by substituting boundary condition equation (4)
into Eq. (16). Boundary condition equation (9) by introducing Eq.
(16) leads to

oal

oh
� al

r� � r�m

or�m
oh
þ obl

oh
ðr� � r�mÞ � 2bl

or�m
oh

¼ �Nu al þ blðr� � r�mÞ �
wc

r� � r�m

� 
ð27Þ

The axisymmetric boundary condition obl/oh = 0 at h = p is also
needed.

2.4. Determination of temperature coefficients in solid

The relation between temperature coefficients at the solidifica-
tion front for angle hme 6 h 6 hRe used for solving Eq. (20) is

as ¼ �bs
s�

cos h
� r�m

� �
ð28Þ

which is obtained by substituting Eq. (10) into Eq. (17). Since the as-
sumed temperature profile is automatically satisfied at the outer
boundary of the liquid layer, the other relation is needed to un-
iquely determine temperature coefficients of solid. In this work, it
is proposed by introducing a fictitiously solid layer beyond the
solidification front, as illustrated in Fig. 2, with the temperature
profile from Eq. (17). This leads to

wf ¼ as
s� þ f
cos h

� r�m

� �
þ bs

s� þ f
cos h

� r�m

� �2

ð29Þ

The effects of the fictitious boundary condition equation (29) on
temperature fields are presented later. Substituting the linear tem-
perature profile as proposed by Eq. (11) into Eq. (17) leads to

as ¼ g�
R� cos h� s�

R� � r�m
� bs R� � r�m

� 	
ð30Þ

The axisymmetric condition obs/oh = 0 at h = p.
Initial temperature coefficients al0, bl0, as0, bs0 are determined

from specification of initial temperature distributions in the liquid
layer and solid. Derivations are presented in Appendix A.

2.5. Numerical method

Eq. (19) (and Eq. (20)) can be cast into

A1
o2bl

oh2 þ A2
obl

oh
þ A3bl þ A4

o2al

oh2 þ A5
oal

oh
þ A6al ¼

oH�l
ot�

ð31Þ



Fig. 2. Determination of temperature coefficients as and bs for hme 6 h 6 hRe.
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where the second and fifth terms on the left-hand side can be con-
sidered as convection terms, so that an upwind difference is used
for discretization [42,43]. That is, the backward difference is used
for a positive coefficient. Otherwise, the forward difference is
adopted for a negative coefficient. The procedure to calculate thick-
ness of the liquid layer and temperature fields around the bubble is
described as follows:

1. Working parameters Stefan number, thermal conductivity and
diffusivity ratios, cooling and melting temperatures, initial tem-
perature fields, and r�i ðhÞ;R

�; z�c; g
�
0; f ; b; b

0, etc. are specified.
2. H�l0;H

�
s0; al0; bl0; as0 and bs0 are, respectively, calculated from Eqs.

(A4), (A10), (A6), (A5), (A12) and (A11).
3. Eqs. (25), (18) and (21) are, respectively, used to calculate r�m, d*

and d�R.
4. Coefficient bl in Eq. (19) is numerically integrated over angles

hme 6 h 6 p subject to Eq. (26), the axisymmetric condition,
and Eq. (27) at hme. Coefficients in the range hie 6 h 6 hme are
calculated from Eqs. (26) and (27).

5. Coefficient bs in Eq. (20) is numerically integrated over angles
hRe 6 h 6 p subject to Eq. (30), the axisymmetric condition,
and Eq. (28) at hRe. Coefficients in the range hme 6 h 6 hRe are
calculated from Eqs. (28) and (29).

6. Steps 3–5 are repeated until convergence is achieved.
7. Temperature and energy fields in the liquid layer and solid are

calculated from Eqs. (16), (17), (23) and (24), respectively.
8. Go to the next time and perform Steps 3–7.

3. Results and discussion

In this work, the independent dimensionless parameters gov-
erning temperature fields around a bubble or particle surrounded
by a molten layer and entrapped in a solid produced during unidi-
rectional solidification are the following: thermal conductivity and
diffusivity ratios between liquid and solid (K and C), Stefan num-
ber (Ste), Nusselt number (Nu), and parameters governing bubble
or particle shape, solidification rate, solid temperature gradient
and cold temperature. Based on an initial radius of curvature at
the axisymmetric axis r0 = 5 � 10�4 m, solidification rate U =
10�5 m/s, dimensionless independent parameters estimated are
K = 0.5, C = 0.5, Ste = 0.0167, Nu = 4.55 � 10�4, R* = 40, z�c ¼ �100,
f = 62, wc = �10. Dimensionless temperature at location z* = s* + f
is wf ¼ g�f f in a fictitious solid layer beyond the solidification front.
In fact, this condition implies specified heat flux at the solidifica-
tion front. The temperature gradient in the fictitious solid layer,
for simplicity, is assumed to be identical to that in the bulk solid,
g�f ¼ g�. The contour of the inner surface (namely, bubble or parti-
cle surface) r� ¼ r�i is assumed to be a paraboloid of revolution
given by

r�i ¼ 1þ cðp� hÞ2 ð32Þ

where coefficient c = 0.2. Provided that the bubble surface is time
dependent, Eq. (32) can be replaced by the Rayleigh–Plesset or
the Young–Laplace equation [44]. The time-dependent bubble
shape therefore is affected by gas pressure in the bubble, as well
as liquid and capillary pressures. The computation, however,
becomes quite difficult.

Initial conditions for the integral method are specified in accor-
dance with the finite-difference solutions of enthalpy equations
provided by Lin [45]. Given temperatures of the bubble and solid,
the higher temperature of the bubble heats the solid until a liquid
layer occurs. Curve-fitting the contour of the liquid layer around
the bubble at a chosen time gives the initial condition for the
boundary between solid and liquid. That is

r�m0¼16:8433�20:4789hþ11:1423h2�2:81269h3þ0:272755h4

ð33Þ

The corresponding initial dimensionless temperature distributions
in the liquid and solid are specified from Eqs. (A3) and (A9), respec-
tively, by choosing b = �2.4 and b0 = �10�5 to simulate finite-differ-
ence solutions of enthalpy equations.

A successive over-relaxation method with a relaxation factor of
1.1 was used to solve an implicit finite-difference form of Eq. (31)
governing time- and angle-dependent temperature coefficients
[42,43]. Temperature fields thus are determined after coefficients
are found at each time. Computations required convergence of
temperature fields to be less than a relative error of 10�4. The
effects of different grid systems (Nh � Nr � Dt*) with uniform
spaces in longitudinal and radial directions and time on tempera-
ture fields are shown in Fig. 3(a)–(c), respectively. It can be seen
that using time step Dt* = 4 leads to very different temperature
profiles, particularly near the solidification front and middle region
of the solid phase. Relative deviation was found to be less than 1%
by changing nodal points from 21 to 41 in the longitudinal
direction, and the dimensionless time step from 0.4 to 0.04,
respectively. The effect of nodal points from 21 to 41 in the radial
direction is slight. Hence, thermal fields computed by choosing
Nh = 21, Nr = 41, and Dt* = 0.4 are sufficiently accurate for predic-
tion in this work, as can also be seen in Fig. 3(d).

A comparison of predicted dimensionless temperature fields
and liquid layer shapes between finite-difference method [45]
and this work is presented in Fig. 4. The finite-difference method
was used to solve enthalpy formulation of the energy equation.
In contrast to often-used immobilization transformations for the
governing equations in distinct phases satisfied by Stefan bound-
ary condition, which lead to many additional terms, the enthalpy
formation valid for different phases in the original coordinate sys-
tem is efficient for dealing with phase transition between solid and
liquid. The enthalpy method, however, still exhibits difficulties
owing to the irregular physical domains. This work therefore
extends the simpler heat-balance integral approximation method
to solve elliptic equations in time-dependent irregular domains
experiencing phase transitions in different regions. The major
advantage of this method is that the number of independent vari-
ables is reduced by one after applying integration. In this figure,



Fig. 3. Convergence test by varying grids in (a) longitudinal direction, (b) radial direction, (c) time, and (d) longitudinal, radial and time.

Fig. 4. Comparisons of predicted dimensionless temperature fields and fusion zone
shapes between finite-difference method [45] and this work.
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the solid and dashed lines, respectively, represent the isothermal
lines obtained from the finite-difference solution of the enthalpy
equation and this work. Dimensionless temperature of unity refers
to the inner surface, while the isothermal line of zero temperature
indicates the outer boundary of the molten layer. In view of heat
transfer from the higher temperature at the bubble surface, the so-
lid is melted as a thin layer around the inner surface. Heat can also
be transferred from higher temperature of the liquid above the
solidification front into the solid. Thus heat transfer far away from
the bubble is unidirectional, while that near the bubble is radial.
Uniform spacing between isothermal lines reflects constant tem-
perature gradient in the solid region far from the bubble. Dense
spacing between the isothermal lines implies high heat flux near
the bubble. To compare the finite-difference solution, initial coeffi-
cients of temperatures in liquid and solid are chosen to be
b = �0.12, and b0 = �10�6, respectively, while the initial contour
of the liquid layer is

r�m0 ¼ 25:2650� 30:7184hþ 16:7135h2 � 4:2190h3 þ 0:4091h4

ð34Þ

The initial temperature field of this work thus agrees well with that
of the finite-difference method. This figure finds that the solution
provided in this work agrees with the finite-difference solution.
Even though the initial temperature was arbitrarily chosen, the
deviation between two methods decreased with increasing time.
The relevancy of this work is thus confirmed.
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Two constraints are required to determine two coefficients of
the assumed quadratic temperature distribution in each phase, as
discussed previously. In view of the irregular shapes of distinct
phases, temperature coefficients are determined in three ways in
this work. That is, temperature coefficients in the liquid layer
between hie 6 h 6 hme are determined by given two boundary
conditions Eqs. (26) and (27). Two coefficients in the liquid layer
for angles hme 6 h 6 p are determined by solving Eqs. (19) and
(26) subject to the axisymmetric boundary condition, and bound-
ary condition equation (27) at the edge angle hme. In the solid re-
gion, Eq. (28) and the fictitious boundary condition equation (29)
are introduced to determine temperature coefficients with angles
between hme 6 h 6 hRe. This is consistent with the fact that the
temperature profile (or velocity profile in boundary layer) must
be chosen as a prior condition in the integral approximation
method. Determinations of temperature coefficients for the angle
between hRe 6 h 6 p require solving Eq. (20) subject to the axisym-
metric condition, boundary condition equations (30) and (28) at
hRe.
Fig. 5. Effect of dimensionless fictitious distance on temperature fields.

Fig. 6. Dimensionless temperature fields in liquid and solid predicted

Fig. 7. Dimensionless temperature fields and fusion zone shape in liquid and solid
at t* = 60 for thermal conductivity ratio K = 0.25.
The effects of the fictitious boundary condition on temperature
fields around the bubble or particle are seen in Fig. 5. A significant
increase by 20 times in the dimensionless fictitious distance results
in non-flat isothermal lines near the middle region and solidifica-
tion front. Interestingly, the effects of the fictitious distance on
thermal fields are insignificant. This agrees with the well-known
fact that the effects of temperature (or velocity) profile on energy
(or momentum) transport in the integral approximation methods
are insignificant. Computations also showed that deviation is re-
duced, provided that the outer radius of the system R* is chosen
to be larger.

Fig. 6(a) and (b) shows the predicted dimensionless tempera-
ture fields in liquid and solid at dimensionless time t* = 8 and 60,
respectively. Dimensionless times correspond to 2 and 15 s,
respectively, for the freezing of water and melting of ice. It can
be seen that the solidification front proceeds and the region of
the molten layer expands as time increases. This is attributed to
the fact that heat transfer from the liquid and bubble to the solid
is greater than that dissipated to the surroundings by cooling at
from this work at dimensionless time (a) t* = 8, and (b) t* = 60.



Fig. 8. Dimensionless temperature fields and fusion zone shape in liquid and solid
at t* = 60 for Stefan number Ste = 0.0084.
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an early stage. Computations also showed that thickness of the
molten layer may be either decreased or increased in the course
of freezing. The results will be presented in a future work.

Fig. 7 shows the effects of the liquid-to-solid thermal conductiv-
ity ratio on dimensionless temperature fields in a liquid and a solid.
Referring to Fig. 6(b), a decrease in the liquid-to-solid thermal con-
ductivity ratio or an increase in solid thermal conductivity reduces
the thickness of the liquid layer. The reason for this is that latent
heat for melting decreases due to an increase in heat conduction
into solid, as can be seen from the Stefan boundary condition. In
view of the increase in latent heat seen in Fig. 6(b), a decrease in
Stefan number reduces the thickness of the liquid layer, as shown
in Fig. 8.

4. Conclusions

The following conclusions can be drawn:

1. Temperature distributions in the molten layer and solid
with distinct properties around a bubble or particle
entrapped in solid during unidirectional solidification are
determined by applying the heat-balance integral method.
The heat-balance equations are derived by integrating
unsteady elliptic heat conduction equations and introducing
the Stefan boundary condition. Since the number of inde-
pendent variables is reduced by one, the heat-balance inte-
gral method is a good tool to study moving boundary
problems experiencing phase changes. Computed results
agree with finite-difference solutions of enthalpy equations
and physical interpretation.

2. Due to the time-dependent irregular shapes of phases, the coef-
ficients of assumed quadratic temperature profiles are consid-
ered to be functions of longitudinal coordinate and time. Two
temperature coefficients in each phase can be determined by
(a) one boundary condition and the equation governing temper-
ature coefficient obtained from the heat-balance integral equa-
tion, (b) two boundary conditions, and (c) one boundary
condition and an introduced fictitious boundary condition.
The fictitious boundary condition used to determine coeffi-
cients encountered in an irregular physical domain leads to
good results.
3. It would be worthwhile extending this method to solve
unsteady convective elliptic problems with phase changes in
irregular shapes. Furthermore, the time-dependent surface of
the bubble or inner surface of the system can also be straight-
forwardly extended with challenging. However, this requires
an inclusion of the Rayleigh–Plesset or the Young–Laplace
equation for a complicated analysis.

Appendix A

Initial temperature coefficients al0, bl0, as0, bs0 are determined as
follows:

Initial liquid temperature is given by

T l0 ¼ ðT i � TmÞ a r� � r�i
� 	2 þ b r� � r�i

� 	
þ c

h i
ðA1Þ

where a, b and c are constants. The degree of Eq. (A1) can be se-
lected to be higher than quadratic to obtain more accurate results.
Coefficients in Eq. (A1) are determined by satisfying boundary
conditions

T l0 ¼ T i at r� ¼ r�i ; and T l0 ¼ Tm at r� ¼ r�m0 ðA2Þ

Dimensionless initial temperature in the liquid layer then yields

wl0 ¼ 1� bþ 1
r�m0 � r�i

� �
r� � r�i
� 	2

r�m0 � r�i
� 	þ b r� � r�i

� 	
ðA3Þ

Energy function of liquid in Eq. (14) by substituting Eq. (A3)
gives

H�l0 ¼
1
3

r�3m0 � r�3i

� 	
� bþ 1

r�m0 � r�i

� �
r�m0 � r�i
� 	�1

� 1
5
ðr�5m0 � r�5i Þ �

1
2

r�i r�4m0 � r�4i

� 	
þ r�2i

3
r�3m0 � r�3i

� 	� 

þ b
1
4

r�4m0 � r�4i

� 	
� r�i

3
r�3m0 � r�3i

� 	� 
ðA4Þ

Comparing Eq. (A4) with Eq. (23) subject to Eq. (26), respectively,
gives

bl0 ¼
1
d�0

r�m0r�3i

3
� r�4i

4
� r�4m0

12

� �
þ 1

3
r�3m0 � r�3i

� 	
� 1

d�0
bþ 1

d0

� ��

� 1
5
ðr�5m0 � r�5i Þ �

r�i
2

r�4m0 � r�4i

� 	
þ r�2i

3
r�3m0 � r�3i

� 	� 

þb
1
4

r�4m0 � r�4i

� 	
� r�i

3
r�3m0 � r�3i

� 	� �
d�0

r�m0r�3i

3
� r�4i

4
� r�4m0

12

� ��

þ r�5m0

30
� r�2m0r�3i

3
þ r�4i r�m0

2
� r�5i

5

�1

ðA5Þ

al0 ¼ d�0bl0 �
1
d�0

ðA6Þ

Similarly, temperature distribution in the solid is considered to
be

Ts0 ¼ ðT i � TmÞ a0ðr� � r�m0Þ
2 þ b0ðr� � r�m0Þ þ c0

h i
ðA7Þ

subject to boundary conditions

Ts0 ¼ Tm at r� ¼ r�m0; and Ts0 ¼ Tm þ zg0 at r� ¼ R� ðA8Þ

Distributions of dimensionless temperature and energy in the solid,
respectively, lead to
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ws0 ¼ R�g�0 cos h0 � b0 R� � r�m0

� 	� � r� � r�m0

R� � r�m0

� �2

þ b0ðr� � r�m0Þ ðA9Þ

H�s0 ¼ R�g�0 cos h0 � b0 R� � r�m0

� 	� �
R� � r�m0

� 	�2

� 1
5

R�5 � r�5m0


 �
� 1

2
r�m0 R�4 � r�4m0


 �
þ r�2m0

3
R�3 � r�3m0


 �� 

þ b0
1
4

R�4 � r�4m0


 �
� r�m0

3
R�3 � r�3m0


 �� 
ðA10Þ

Eq. (A10) by comparing to Eq. (24) gives

bs0 ¼ � g�0
d�R0

R� cos h0
R�4

4
� r�m0R�3

3
þ r�4m0

12

 !(
þ d��2

R0 R�g�0 cos h0 � b0d�R0

� 	

� 1
5
ðR�5 � r�5m0Þ �

1
2

r�m0ðR
�4 � r�4m0Þ þ

r�2m0

3
ðR�3 � r�3m0Þ

� 

þ b0
1
4
ðR�4

�
�r�4m0Þ �

r�m0

3
ðR�3 � r�3m0Þ

�

� R�5

5
� R�4rm0

2
þ R�3r�2m0

3
� r�5m0

30
� d�R0

R�4

4
� r�m0R�3

3
þ r�4m0

12

 !" #�1

ðA11Þ

where Eq. (28) at the initial time

as0 ¼
g�0
d�R0

R� cos h0 � bs0d
�
R0 ðA12Þ

is introduced. Initial temperature coefficients as a function of longi-
tudinal coordinate in the liquid layer and solid region therefore are
calculated from Eqs. (A5), (A6), (A11) and (A12), respectively, by
specifying constant coefficients b and b0.
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